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4 Introduction

Breast cancer is a major cause of death among women over the age of forty [1]. Mam-
mography is the most effective diagnostic procedure for the early detection of breast can-
cer [2,3]. Mammography is not, however, perfect. Between 10-30% of women who have
breast cancer and undergo mammography have negative mammograms [4-7]. Of these, ra-
diologists have determined, retrospectively, that two-thirds of the cancers could have been
detected [5,6,8,9]. One possible means by which to decrease this number is to have two
radiologists read the mammograms. This method has been shown to increase sensitivity by
as much as 15%, [10,11] but can be costly both financially and with respect to time. A
computer-aided diagnostic scheme may act as an inexpensive second reading method. The
final decision would be made by the radiologist.

The proposed research seeks to answer questions that arise when using pattern classifiers
in decision making applications. Problems occur when the number of inputs to the pat-
tern classifier become large. For this reason, genetic algorithms and other feature selection
techniques are currently being studied to alleviate this problem. The purpose of this pro-
posed research is to study and develop feature selection and pattern classification methods
to improve the performance of CAD schemes. Specific emphasis will be placed using the
developed methods in the computerized detection of mass lesions in mammography.




Annual Report DAMD 17-97-1-7202 6

5 Body

5.1 Investigation of Feature Selection

Feature selection is the task of selecting a useful and robust subset of features to be
used within a classifier. To gain a better understanding of the difficulties associated with
selecting features, we examined a relatively simple feature-selection problem using A, (area
under the ROC curve) as a performance measure. By studying this simple problem we
hope to gain understanding of more complicated feature selection methods such as genetic
algorithms. Let us consider the following ideal situation: We have a total of D independent
features with the first 7 features having theoretical A, values of A{) and the remaining D —r
features having theoretical A, values of A where AW > A Because the features in this
situation are independent, we conclude that the D random variables denoting the measured
A, values are also independent with density functions given by pﬁj (A,) for the r features
with theoretical A, values of A% and pfz)_ (A,) for the D — r features with theoretical A,
values of A®?. Similarly, the distribution functions are given by P,Slj (A,) for the r features
with theoretical A, values of A%Y and PX)(AZ) for the D — r features with theoretical A,
values of A®).

The task in this situation is to select the d features (where d < r) that have the largest
measured A, values. Because, however, the measured A, values have a distribution associ-
ated with them, there is a measurable probability that one or more of the “worse” features
(those features with a theoretical A, value of A®? < AWM) will be selected. Using order
statistics [12-15], we have derived the probability that an optimal subset of features will be
selected in the situation described above:

1 1
o ] M A = PG TR TP (A ()
0

where the integration is from 0 to 1 because A, values are bound between 0 and 1. In theory,
the probability in the situation where each independent feature has a different theoretical
A, value could be computed, but it is computationally impractical.

5.1.1 Results to Date

Figure 1(a) plots the probability of an optimal subset consisting of 4 features being
selected as a function of the total number of features D (See Eqn. 1). In this plot the total
number of features with theoretical A, = A% was 4, AQ) was set at 0.70, and A'? was fixed
at 0.60. The dataset size s was also varied from 100 to 1000 where there were equal numbers
of abnormal and normal observations, i.e., s, = s, = s/2. As Fig. 1(a) shows, with small
dataset sizes the probability of selecting an optimal subset of features drops quickly as the
total number of features D increases. Figure 1(b) shows similar plots (d = 4, r = 4) but
with higher theoretical A, values, i.e., A1) = 0.8 and A® = 0.7. Comparison of Figs. 1(a)
and 1(b) indicates that, although the differences in theoretical A, values (A — A{?)) are the
same, the probabilities of selecting an optimal subset of features vary for identical dataset
sizes. These findings indicate that the probabilities of selecting an optimal subset of features
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Fig 1: A plot of the probability of selecting an optimal subset consisting of d = 4 features
from a total of D features. There are a total of r = 4 features with a theoretical A,
value of A = 0.7 for (a) and AW = 0.8 for (b). There are also D — r features with
a theoretical A, value of AP = 0.6 for (a) and AP = 0.7 for (b). The probability of
selecting an optimal subset of features is also plotted for various dataset sizes s.

depend on the theoretical A, values of the features and not solely on the differences between
the theoretical A, values of the “good” and “bad” features.

In a second study, we simulated D features using Gaussian distributions, where d features
had theoretical A, values of A = 0.68, and D — d features had theoretical A, values of
A = 0.60. The d features with the highest measured A, values were then combined using
linear discriminant analysis to merge the d-dimensional features to a scalar decision variable.
The A, value of the classifier was measured using that decision variable data. The same
dataset employed to select the d features was used to determine the parameters of the linear
discriminant that merged the d features. We also tested the classifier on an independent
dataset of 1000 samples. This process was repeated 100 times for each combination of
parameters to obtain an average training dataset A, and testing dataset A, values for the
classifier. Figure 2 shows a plot, for various total numbers of features D, of the average
training and testing dataset A, values as a function of the dataset size s. The thin solid
line in Fig. 2 is the theoretical A, value of 4 independent Gaussian features, with equal
variances and individual A, values of 0.68, merged using linear discriminants. The curves
above the theoretical line are the average training dataset A, values, and the curves below
the theoretical line are the average testing dataset A, values. Figure 2 indicates that bias
is introduced when the same datasets are used to select and merge features. The bias is
enhanced when the dataset size is small and there are a large number of features D; these
are the same conditions under which selection of an optimal subset of features is the most
difficult (see Figs. 1(a)-1(b)). Hence, a suboptimal subset of features is most likely selected
and bias is introduced because we are employing the same dataset to both select features
and determine the parameters of the classifier.




.

Annual Report DAMD 17-97-1-7202

0.95

0.91

0851

Avcrage A,

08¢

0.75 . . . . .
0 100 200 300 400 500 600

Dataset Size (s)

Fig 2: A total of r = 4 Gaussian features were simulated with theoretical A, values of A(l)

0.68 and D — r Gaussian features were simulated with theoretical A, values of A(

0.6. Features were sampled 100 different times and the top d = 4 features were belected
based on the measured A, values of the individual features. The selected features were
then merged using linear discriminants and the training dataset and testing dataset
A, values were computed. The thin solid line at an A, of 0.818 is the theoretical
true A, if the 4 independent Gaussian (A, = 0.68) features are merged using linear
discriminants. The curves above this theoretical line are the average training dataset
A, values and the curves below the theoretical line are the average testing dataset A,
values. The same dataset used to select the features was employed in determining the
parameters of the linear discriminants. A substantial amount of bias is introduced for
small dataset sizes s and a large total number of features D.
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5.2 Investigation of Bayesian ANNs

In order to perform feature selection with artificial neural networks (ANNs), one must
have a performance or fitness measure in which to optimize. If one were to fully train an
ANN and then test the ANN’s performance on the training dataset, the results will often
be artificially high, i.e., the ANN overtrained. One method of circumventing this problem
is the use round-robin methodology [16] in which numerous ANNs are trained with different
subsets of the data and then tested on the parts of the data left out. This method has
been shown to work well but is time consuming. We have studied the use of Bayesian
ANNs for classification purposes. We have found that Bayesian ANNs are more accurate
and quicker to train than conventional ANNs using round-robin methodology. Bayesian
ANNSs regularize training in a much different manner, i.e., they use a prior term in the cost
function to penalize complicated (or overtrained) ANN solutions. This allows for more rapid
ANN training without overtraining and is, thus, more practical as a pattern classifier and
for feature selection tasks.

5.2.1 Results to Date

Figure 3(a) shows the performance of the Bayesian ANN with varying numbers of hidden
units h and input dimensions d for a fixed signal-to-noise ratio SNR = 1.26 and dataset
size s = 200. For lower dimensions (d = 1, d = 2, and d = 3), the average mean squared
error (MSE) between the optimal decision variable and the Bayesian ANN approximation of
that decision variable decreases as the number of hidden units increases and then becomes
relatively constant after a certain threshold. For d = 2, the MSE becomes relatively constant
after 3 hidden units, while for d = 3, the MSE flattens out after 4 hidden units. More
parameters are required to better approximate the optimal mapping function as the number
of dimensions increases. For d = 4 and d = 5, there is a pronounced minimum in the MSE.
These results indicate that as the number of dimensions increases, the Bayesian ANN does
not have enough data to approximate properly the optimal mapping function. Consequently,
a tradeoff exists between simpler solutions (i.e., few parameters @) that cannot match the
ideal observer due to under-parameterization and more complex solutions with numerous
parameters w that cannot be properly determined due to the lack of data.

5.3 Investigation of RGI Filtering

In CAD, the performance of a pattern classifier is limited by the performance of the
initial detection filtering. For example, if the pattern classifier operates at a specificity of
90% but the initial detection algorithm returns 50 false detections per image, then the final
performance will be 5 false positives per image which is unacceptable for clinical implemen-
tation. We have previously analyzed the use of a constraint function and the radial gradient
index (RGI) feature in the segmentation of mass lesions in mammograms [17]. In this work,
we will extend the use of RGI feature to a non-linear filtering method which can be used
in the initial detection phase of a mass detection scheme. Comparisons between this new
filtering method and previous methods will be presented.
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Fig 3: The effect of the number of hidden units h on the accuracy of Bayesian ANNs with
a fixed SNR = 1.26 and dataset size (a) s = 200 and (b) s = 1000. With a limited
training dataset (a), the Bayesian ANN cannot properly approximate the optimal
mapping function at higher dimensions (d = 4 and d = 5) but does not have a problem
with a larger training dataset (b). The error bars represent +io.

5.3.1 Results to Date

In order to evaluate the overall performance of this filtering technique, we employed a
database of 112 mammograms containing 64 malignant mass lesions (118 visible lesions) dig-
itized on a Lumisys 100 digitizer using a 100 pm pixel size and 12-bit gray-level quantization.
The images were subsampled to an effective pixel size of 0.5 mm. Each visible lesion was out-
lined by a radiologist experienced in mammography. For each image, an RGI filtered image
was generated using a skip factor of 4. These images were then thresholded at many different
RGI threshold values ranging from -1 to 1 and the centers of those regions passing both the
RGI threshold and the various size cutoffs were compared with the radiologist’s outlines for
each image. If the center of a region was contained within the radiologist’s outline for that
image, then that lesion was considered to be detected. Figure 4 shows the FROC curves
for the RGI filtering technique at various size cutoffs and where the implicit FROC decision
variable is the RGI threshold value. Each FROC curves exhibits the interesting property of
beginning and ending at similar locations near (0,0) in FROC space. At a very high RGI
threshold. no pixels will pass the threshold and there will be no true detections and also no
false detections. At a very low threshold, however, there will only be one connected region
returned because every point within the image passes the threshold so the sensitivity and
the number of false detections per image will be low.

One can also see in Fig. 4 that increasing the size cutoff causes the FROC curve to shift
to the left and down. It is important to note that for a size cutoff of 1 (regions must be
greater than 1 pixel), the shift is much greater to the left than it is down from a size cutoft
of 0 pixels (no minimum size). The false-positive rate is substantially reduced at a minimal
cost to the sensitivity of the method. This agrees with the assumption that many of the
detections of size 1 pixel are due to random fluctuations and not actual abnormalities in the
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Fig 4: RGI filtering FROC curves for various minimum size cutoffs using the RGI threshold
as the decision variable. Note that there is a large decrease in the false-detection rate
when the minimum size cutoff in increased from 0 to 1 without a large decrease in the
sensitivity.

image.

The previous method employed during the initial detection phase of the mass detection
method was the bilateral subtraction technique [18]. On the same database, bilateral sub-
traction yielded a sensitivity of 64% at 48 false detections per image. The RGI filtering
technique, as can be seen in Fig. 4, can yield a sensitivity of 93% at 16 false detections
per image which represents a substantial improvement. This, however, is just the first step
in the computerized detection scheme. In order to evaluate the performance of the overall
technique, we implemented a simple pattern classifier and applied it to the regions returned
by RGI filtering and bilateral subtraction. Each point returned by RGI filtering was used
as a seed point for our lesion segmentation algorithm described in [17]. The lesion segmen-
tation algorithm returns a contour which “best” delineates the potential lesion. Using this
information, along with the image function f(z,y), we extracted three features; the RGI,
the contrast [19], and the average gradient strength along the segmented contour. Linear
discriminant analysis [20, 21], trained on an independent dataset, was used to distinguish
between actual lesions and false detections. The training datasets for both initial detection
methods consisted of the true lesions detected by each method and a randomly chosen subset
of false detection returned by each method. FROC curves showing the performance of this
combined scheme are shown in Fig. 5 for both the previous method of bilateral subtraction
and RGI filtering. The sensitivity plotted in Fig. 5 is the by-patient sensitivity. Note that
for the RGI filtering curve, the RGI threshold was fixed at 0.74 and the size cutoft was fixed
at 1 which corresponds to the (93%, 16) point in FROC space in Fig. 4, and the linear dis-
criminant threshold value was employed to sweep out the FROC curves. The same features
were used in both the RGI filtering FROC curve and the bilateral subtraction curve.
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Fig 5: FROC curves for the RGI filtering technique and bilateral subtraction using a simple
pattern classify to reduce the number of false detections returned by both methods.
A total of three features were used in the pattern classifier for both methods.

6 Conclusions

We have studied some of the fundamental properties of feature selection. We have found
that the probability of selecting an optimal subset of features rapidly decreases as the sample
size decreases and the total number of features from which to select increases. Understanding
the limitation of feature selection will help us select (using methods such as 1D analysis and
genetic algorithms) a useful and robust subset of features to be used in the computerized
detection of mass lesions in mammography.

We have also studied the use of Bayesian artificial neural networks in classification tasks.
We have found that Bayesian ANNs produce more accurate and, yet, robust solutions to
classification problems. Bayesian ANNs also train more rapidly than do conventional ANNs
using round-robin methodology. This information will be used design more accurate and
robust pattern classifiers for the computerized detection of mass lesions in mammography.

We have introduced a new initial filtering scheme to detect mass lesions in mammog-
raphy. The performance of feature selection methods and of pattern classifiers is limited
by the performance of the initial detection algorithm. We have shown that RGI filtering
substantially outperformed the previous method of detecting mass lesions known as bilateral
subtraction.

In the future we will use the RGI filtering technique to detect suspicious image regions in
mammograms. We will then extract features from these regions and select a useful subset of
features taking the knowledge we have gained from our feature selection studies into account.
Finally, these features will be classified using a Bayesian artificial neural network.
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